Working memory and updating processes in reading comprehension

Research methods: Null Hypothesis formulation & testing, dependent & independent variables, qualitative, quantitative and categorical data, measurement scales, descriptive and inferential statistics (measures of central tendency, significance testing, ANOVA, repeated measures, posthoc testing, correlations, chi-square tests); Experimental design:single subject, between-group and within-group designs, randomization, factorial, parametric, subtractive, conjunction type designs; Research Tools: Review of basic mathematics, experimental psychology software (psychtoolbox, eprimeetc), Statistics using PSPP/Matlab/R; Research ethics and scientific writing with reference to APA guidelines.

Single Degree Freedom System (equation of motion; free and force vibrations; seismic excitation; time history analysis; response spectrum; approximate methods), Multiple Degrees Freedom System (eigenvalue problem; shear buildings; mode superposition method; modal combination rules; time history analysis), One story system (lateral-torsional coupling; non-orthogonal lateral coupling; directional combination rule) and introduction to continuum systems (flexural beam, its natural properties, response due to seismic excitation)Stability of rigid and discrete systems, Static, dynamic, imperfection and energy approaches to stability; Buckling; Snap through and post-buckling; Stability of continuous systems- columns beams and beam-columns; Inelastic buckling; Stability of frames; Numerical methods in stability- Timoshenko, Rayleigh Ritz and Galerkin methods, Direct stiffness method in stability problems; Stability of plates, stiffened plates and shells.

Course contents: Identification of nature of the work; Design issues: complex design and calculation, code and regulatory issues, documentation and updating calculations, cost over-run, schedule; Construction issues: type of construction, climatic condition, terrain condition, quality control, material availability, time delay, labor issues, cost-schedule constraints, lost time recovery; Project control and management: evolution of project management, training, planning, work breakdown structure, various methods controlling cost and schedule, inflation factor, delay for various reasons, risk management, event chain, critical events, Gantt chart, project tracking-progress monitoring and controlling, analysis of measureable goals, financial (cost-benefit) analysis, stakeholder analysis, milestone analysis, cost trend analysis, value benefit analysis, target and actual comparison, International standards, various software, quality assurance and control; Safety issues and control; Legal aspects: Claim; avoidance; liability.

Open Channel Flow: Uniform flow, Critical flow, Gradually varied flow (GVF), Computations in GVF, Sediment transport, Design of canals, Hydraulic jump, Flow past sharp- and broad-crested weirs, Design of spillways, Flood routing, Dam-break flow, Hydraulic design of bridges Pipe Flow: Head losses in pipes, Pipe network analysis, Transients in pipes, Detection of leak and partial blockage Flow measurements and laboratory scale modeling Earthquakes: structure of earth, movement of plates, types of faults, P wave, S wave, surface waves, characterization of earthquakes and earthquake-induced ground motion; response spectra for individual ground motion records, site-specific response spectra, design spectra; single-degree-of-freedom systems; multi-degree-of-freedom systems; analysis, design and detailing of RC frames based on state-of-the-art and various codes IS 456, IS 1893 & IS 13920; Special topics: selection and scaling of ground motions, characterization of seismic hazard, seismic analysis and design of bridges, retaining walls, liquid-storage tanks, dams etc., design of non-structural components, passive structural control Stability of slopes, stability analysis, seismic analysis, probabilistic analysis, design of earth embankments and dams; Earth pressure theories; Earth retaining structures: rigid and flexible, Braced excavation; Reinforced earth structures; Buried structures, Case studies.

Transients in pipe flows: Causes of transients; Governing equations; Method of characteristics, Transients caused by centrifugal pumps, Hydraulic transients in long oil pipelines, Resonance in pressurized piping system, Methods to control transients, surge tanks.

Background on stones, bricks, tiles, cement, steel, concrete, paints and polymers with relevant discussions of IS code provisions; concrete mix design; durability of concrete.